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The Boltzmann equation for an electron gas in a weakly ionized plasma is solved for an inhomogene-
ous plasma in a steady state but outside equilibrium (no Maxwell distribution). The inhomogeneity con-
cerns both the electron density and the imposed dc electric field. With the emphasis on the case of a
molecular gas discharge, the perturbed part of the electron distribution is evaluated only to the first or-
der in gradients. The result is incorporated in the electron transport equations, where it leads to a renor-
malization of transport coefficients. Based on this procedure, a corrected version of the so-called

quasihomogeneous equations is given.

PACS number(s): 51.50.+v, 52.25.Dg

I. INTRODUCTION

In many problems associated with the physics of weak-
ly ionized plasmas the need for an adequate description
of plasma inhomogeneity is encountered. This concerns,
for instance, the radial dependence of various plasma pa-
rameters in the positive column [1], wave phenomena [2],
surface phenomena [3], and many other fields. Whereas
the case of heavy particles constituting the plasma can
usually be treated by standard methods [4], the electron
gas merits special attention.

In swarm experiments [5] and a low-current discharge
[6] the electron gas is so thin that the mutual electron
Coulomb collisions are practically nonexistent and a sin-
gle electron collides mainly with the neutral atoms or
molecules of the background gas. At the same time the
electron is accelerated between collisions by the imposed
electric field. As a result, an electron gas velocity distri-
bution is established, the shape of which depends largely
on the form of collisional cross sections. For a homo-
geneous one-dimensional plasma a direct solution of the
Boltzmann equation is possible, rendering a distribution
function that, in principle, is not local.

In the absence of a local electron distribution, the for-
mulation of equations of hydrodynamics is possible if a
replacement for the missing local distribution is found. If
the distribution of the homogeneous column is substitut-
ed for the local distribution, the set of so-called quasiho-
mogeneous equations is derived [7]. For that purpose,
the field dependence of the distribution of the homogene-
ous column is replaced by the dependence on the mean
electron energy, which is then regarded as a local quanti-
ty governed by the electron energy equation. These
somewhat artificially constructed equations of hydro-
dynamics render a realistic description of plasma inho-
mogeneity provided the energy correlation length (i.e.,
the length measured along the field over which a single
electron ‘““forgets™ its initial energy; see [8]) is small com-
pared with the inhomogeneity scale. In an atomic (noble
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gas) plasma, in a regime where the elastic energy loss is
weak, a direct solution of the Boltzmann equation shows
that the nonlocality or memory effects may appear if the
correlation length is longer than the acceleration length
U,./E, U,, being the equivalent potential of the first in-
elastic threshold and E the longitudinal field strength.
These phenomena appear since, though the electron gas
may be collision dominated with respect to the momen-
tum scattering, it need not be collisional with respect to
the energy scattering thanks to the tiny ratio of the
electron-to-atom (or molecular) mass. On the other
hand, in a molecular gas plasma there is a strong energy
scattering mainly on the vibrational degrees of freedom
of the molecules (the energy loss due to scattering on the
rotational levels is comparable to the elastic scattering).
The energy loss incurred by the vibrational excitation
acts, in fact, in the same manner as the elastic scattering
(for all practical purposes negligible in a plasma of self-
sustained glow discharge in a molecular gas) in the case
of an atomic gas and thus the correlation length is con-
siderably shortened. The equations of local hydrodynam-
ics should thus become adequate for a description of the
molecular gas plasma. It was, however, pointed out in
[9,10] that the first-order nonlocality corrections enter
the hydrodynamic equations in such a way that they
group with the hydrodynamic flow terms, leading to a
modification of the transport coefficients. As shown in
[9,10], e.g., the diffusion coefficient acquires, owing to the
just described corrections, a tensorial character splitting
in a lateral and a longitudinal part with respect to the
field direction. The purpose of this paper is to find an
analogous augmentation of other transport coefficients as
they enter the set of quasihomogeneous equations [7].
Over the past ten years the problem of nonlocality
corrections to the transport coefficients was discussed
several times in the literature [11-18]. Some of these pa-
pers include, in addition to the spatial variation of the
density and electric field, the temporal dependence [18].
None of them, however, spells out clearly the implica-
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tions of the nonlocality for the renormalization of trans-
port coefficients of the quasihomogeneous set of [7].

II. QUASIHOMOGENEOUS EQUATIONS

The Boltzmann equation for the electron gas in a
weakly ionized plasma may, quite generally, be written as
a,f+v-8,f—%E-avf=S(f) , (1)
where the collisional term on the right-hand side includes
in our case only the collisions of the electrons with the
neutral particles (and it is thus linear in the electron dis-
tribution function). The collision term incorporates, in
principle, both the elastic and the inelastic collisions of
the electrons with the heavy particles. Some of the in-
elastic collisions lead just to a rearrangement (shifts) of
the electrons in the velocity space (e.g., excitation pro-
cesses); others, in addition, produce new particles (ioniza-
tion). These source terms have thresholds lying generally
higher than the inelastic collision of the excitation type
and are therefore less important. Moreover, the rear-
rangement of the electrons in the velocity space incurred
by the inelastic energy loss (or gain in a superelastic case)
is generally more important for the formation of the dis-
tribution than the additional electrons created in this
kind of collision. In the following the source terms will
thus not be considered.
The derivation of the quasihomogeneous equations [7]
proceed, however, from the Boltzmann equation expand-
ed in the velocity space:

flr,v,t)=fo(r,v,t)+f(r,v,8)v/v+ - | (2)
172
3 «%— 3,fo+div(Uf,)—E-3y(Uf,)
6 ,
ng—A’;-’a (U20,f,)
+3ng2[UQaf0 (U+U,)
XQ(U+U,)fo(U+U,) =0, 3)
172
1 |mU 1
_ o.f +f,= (Ed —gradf,), 4)
nde 26 t*1 1 nde Ufo g fO

where f, and f, are the homogeneous and the axial part
of the distribution, E is the vector of the electric field, U
is the equivalent potential of the electron kinetic energy
U=mv?/2e, m and M are the electron and the neutral
masses, e is the elementary charge, Q, is the transport
cross section, Q, is the inelastic cross section, and n, is
the number density of neutral particles. Equations (3)
and (4) differ in their time scales. Whereas the charac-
teristic time of (3) is given by the energy scattering time,
(4) is governed by the time scale characteristic of the
momentum scattering. Regarding thus the time change
in (4) as quasistationary, the time derivative can be omit-
ted (neglect of the electron inertia with respect to the
strong collisional momentum scattering):
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If (5) is substituted into (4), an integration of (4) yields the
electron continuity equation

f1= (Eaufo—'gradfo) . (5)

9,n, +div(n,v,)=0 (6)

and the electron energy equation
9,(n,U,)+divq, +n,v,-E=—nH, , (7)
where the electron number density n, and the electron
energy density U, are given as
© 1 =
- 172 =1 3/2
ne—fo dU UV, , U,= " fo dU U**f,, (8

the electron energy loss per electron H, is defined as

%ne_] f dU ng="=U?Q,f,

e

gL
n

172

2 sy, [, dunuQ.fo,

m

1
n

and the energy and particle flows v, and q, are given by

1/2
1 |2e 1 © U
=—|=| — U———3yfoE
Ve 3 m n, fO d Q UfO
1 1 | 2e oo
——pgrad | = |— (10)
neg 3 f de ]
1 . 1 2€ oo
PR ; f ———0yfoE
1 112 Y U?
e ©
——pgrad | = |— U 11
n, gra 3 [ fo d ndefO b

The expressions for the flows still contain the unknown
isotropic part of the distribution f,. In the spirit of the
quasihomogeneous approximation, the solution of the
Boltzmann equation for the homogeneous case f (&
substituted for the unknown isotropic part f, in Wthh
the field dependence is expressed by the dependence on
the mean electron kinetic energy. The relation between
the energy and the field is again that derived for the
homogeneous case, U,=U!(E). In this way it is ob-
tained for the particle and energy flows:

=—beE—DenLgradne—AegradUe ; (12)
e
niqe=—b;E—D:;‘—gradne—A:gradUe . (13)
e e
1 {2 ] U
e ©
b,=—— | = du Ay,
¢ 3 |m fo n,Qy vro
172 (14)
1 |2e o U
D,=— = dU &
¢ 3 |m fo ngQy 0
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1 [ 2e 172 - U2 values of n, and U,. As mentioned in Sec. I, in a molecu-
b} 3 | m f dU———3yf SH) , lar gas plasma where the energy scattering on vibrational
m 0 ngQa (15) degrees of freedom proceeds in many tiny steps (com-
1 [ 2e vz e pared to the mean electron energy) the correlation length
D}= 3 f dU———f{H) is short and the homogeneous distribution can be regard-
n n? Qu ed as local to a reasonable degree of accuracy.
A = d D A¥— d Even if the validity of local hydrodynamics is substan-
e quE e Se gyt D, tiated, the above expressions are inconsistent. The field
¢ ¢ (16)  proportional term in (3) and (4) is of zeroth order when
U= f “4dU U3? i calculating the homogeneous distribution f{), but it
0 joins the gradient terms in the expressions for the flows,
and f ¥ was assumed to be normalized to one: which are all first-order terms, disregarded in the evalua-
tion of f E,H ). The way out of this difficulty has been
f dUVU i = (170 pointed out in [9,10] and it consists in allowing for a

These expressions are usually rewritten in the following
manner:

v,=—b, (18)

e

E+aUe711—gradne +vy gradU,
e

=¢{U,v,—b,U, §Ue;1—gradne+6 gradU, (19)

e e

to render the continuity and energy equations in the form
of the quasihomogeneous set [7]:

d,n,—div |n,b, E+aUe-;ll—gradne+ygradUe =0,
e
(20)
3,(n,U,)+div In, |cUv,—b,U, [gUenigradn,_,
+8 gradU, +n,v,-E=—n,H, , (21)

with the kinetic coefficients a, ¥, &, £, and 8 defined as

D, A = be"
a=—0-=>=, Y= = ,
b U " T 6,07
(22)
PR . be‘"De .
b (UM |7 b, |’
1 blA,
6= -
7 T 22
where b, is the electron mobility, a the Einstein

coefficient, ¥ the thermal diffusion coefficient, £ the
coefficient of the thermal convection, £ the Soret
coefficient, and & the coefficient of the thermal conduc-
tion. For a Maxwell distribution function

#n—_2 1
0 Var U2 exp(
e

the Einstein coefficient a=2 and the Soret coefficient
£=0.

The validity of this quasihomogeneous approximation
for the flows depends on the ability of the electron gas to
establish the “local” homogeneous distribution for given

-uU/u,) (24)

small nonlocality of the distribution and in incorporating
the resulting correction terms in the gradient terms to ob-
tain contributions proportional to E-gradn,. This in
effect endows the originally isotropic gradient terms with
a tensorial character (with respect to the field direction).
In [9,10] the interpretation of the swarm experiments is
considered and the field is regarded as homogeneous with
the correction originating from the density gradient only;
see also [19-24]. However, in the discharge plasma a
field inhomogeneity may also turn up, which should be
accounted for in much the same way as the density gra-
dient. In the following, the results of [9,10] will be ex-
tended to include, besides the density gradient, the field
inhomogeneity.

III. GRADIENT CORRECTIONS
TO THE HOMOGENEOUS DISTRIBUTION

Throughout this section the electric field will be re-
garded as inhomogeneous but static. The Boltzmann
equation will be expanded to the first order in the density
and the field gradients and in such a way the equations
governing the gradient corrections to the homogeneous
distribution will be derived. It would be possible to start
from the Allis-Davydov version of the Boltzmann equa-
tion [(3) and (4)], but we shall, for the sake of simplicity,
keep the original form of the Boltzmann equation (1) and
the expansion in the velocity angular dependence will be
carried out only subsequently. Restricting both expan-
sions to the first-order terms, the results are independent
of the order in which they are applied. The solution of
(1) will be sought as

v]+f,-‘N’(E,v)711—

e

f(r,v,t)=n,(r,t) SFH[E(r) a,ine

+fF(E V)P, E; (25)

where £ is the solution for the homogeneous case and
S and £ are the corrections with the following nor-
malization:

Javr®w=1,
Jav M=o, (26)
fdvf,‘E’(v)_'
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If (25) is substituted into (1), we obtain

dn fH+ (@3, n fH+n,d, Edyp fH+ - )=~ En,

e

1
av‘.f(H)+au,.f}N)n_arjne +auif}lf)arjEk
e

=ne

S(FE)+5( f’_(N))nLarine +S (78, E; ] )]

In the first set of parentheses just the lowest-order terms are written explicitly. In the absence of production terms the
time derivative of the density can be approximated from the continuity equation to first order in accuracy:

_ s (H)
9,n,= —div(n,v,"’)
- (H) _ (H)
= a,ineve,- nea,iEjanve,- ,
vfeH)=fdvvf‘H) .

After a suitable rearrangement of the terms the result is

e

e

e
m,

+

The leading terms cancel out since the f#’ was chosen as
a solution of the homogeneous case. In a self-consistent
model the electron density and the electric field would be
tied together through (in the electrostatic approximation)
the Poisson equation. The Poisson equation contains on
its right-hand side also the ion density, which, together
with the electrons, determines the total charge density.
Since in the following no self-consistent model will be for-
mulated, the ion density si regarded as arbitrary. Hence
both the electron density and the field may be considered
independent; the expressions in the two sets of large
square brackets must vanish:

e
m

E,.aujf,.<N’+S(f,-<N’)=(u,.—u;f’>)f‘”> , 31

e

e

Edy, fif +S (Fif) = 0idg f =85 vif 1) .

e

(32)

The left-hand sides of (31) and (32) come from the col-
lision as well as the field term; the right-hand sides are
given by the space as well as the time derivative terms of
the Boltzmann equation. The solutions of Egs. (31) and
(32) are the sought gradient corrections of the homogene-
ous distribution functions. The corresponding expression
for the particle flow following from a substitution of (25)
into (10) is thus given as

1
vei=ve(iH)—Dijn_arjne_AijkarjEk ’ (33)
e

Dy=— [dvu,f™, Ay=— [dvofP, (34

where vi#) is the unperturbed flow velocity for the homo-

geneous case, D;; is the diffusion tensor, and 4, is the
field gradient correction. The problem involves cylindri-
cal symmetry with respect to the field direction and it is

E,.a,,‘_f‘”>+s (fH)+ —r:_Ejaujfi(N)_'LS(fi(N))—(vi __véiH))f(H)

(28)

(29)

1
—9,n
ne r,- e

E/d,, ,f,.E>+S(f,.‘,.E’)—(u,.anfW’—anu;,"”f(H’) 3,E;=0. (30)

then easy to show (making still use of the relation
rot E=0) that Eq. (33) is equivalent to

1
v,=vi—D, Lgradlne —D,——gradn,
ne ne

—24,,grad E— A4, edivE

—(A;,— A4, )grad,E , (35)
with
D;;=(8;;—e;e;)D, +e;e;D ,
Ay =er(d;—eie;)te;(5 —eep)]A);

—e;[(8—eer) A —eje A1, (36)

where D), D, A;,, A}, and 4, are the only nonvan-
ishing components of the above tensors in the system
with €||Z and e being the unit vector in the field direction
e=E/E.

A quite analogous expression may also be derived for
the energy flow:

1 _1

1 1
—q,=—q#'—D*——grad,n,—D*——grad
n, q. n, q. 1 n gradn, I n, gra "ne

e
—2A4% grad E — A% edivE
—(Ay,— A} )grad/E . (37

In (35) the split of the diffusion coefficient to the longitu-
dinal and the perpendicular components can be recog-
nized; the last terms in (35) and (37) represent similar
corrections to the thermal diffusion and the thermal con-
ductivity coefficients, respectively.

IV. EVALUATION OF THE CORRECTIONS

First, for a practical evaluation of the correction terms
in (35) and (37) a coordinate system with the z axis paral-
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lel to E will be used in which the few nonvanishing com-
ponents of the above tensors are given as

D,,=D,,=D,, Dzz=D“ ,

Apy = Asx = A4y, oy =—A11

Apx = Az, = A1, Azz =dy - (38)
Second, similarly to the case of the unperturbed

Boltzmann equation, the distribution function will be ex-
panded in the velocity space [see (3) and (4)] to render
from (31) and (32) three separate equations

d U
L(H)fé)N):ZUf(]H) E—— f(OH)
nde
U 172
+3 | 22| b EFE (39)
2e
1 U 172
m
LUfR =2 U +3 | == bEf" (40)
LU £ (B =23(Uf ) /0E = UF P
d
+E—5 afsH /3E
de
U 172
+3 —";7 b,EfH (41)

where the linear operator L ‘# is defined as the time- and
the space-independent left-hand side of (3), out of which

{1 is to be calculated:
- U 6m
L(H)fg)H):aU aU BH) +n __a ZQdeH)
nde
—3ng§; Q. fH(U)—(U+U,)Q,(U+U,)
XfE(U+U,)]1=0
(42)
fm=—1_pd d Fum @3)
Q dU )

It is worth noting that the right-hand sides of Egs.
(39)—(41) cancel out upon integration over energy, i.e.,
they do not introduce any spurious source terms in the
continuity equation and thus the correct behavior of the
solutions for U-—->0+ is ensured by imposing
(U/ngQ4)dfU/dU—0 at infinity [25]. The same prop-
erty have the right-hand sides of the original equations
(31) and (32). Once (39)-(41) are solved, the transport
coefficients can be expressed by the following integrals:

D,=D., Ay=A./2—- U‘”’ (44)

1/
2e

Dy=-
m

© U
dU——3yf" +D,, 45)
fo nde v/o

1
3
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Ay=—73 [%ne— 1/2f0deng—%'6U ® (46)
4y ;j %ne“ f du——~ dufis TA. 47)
D*=D}, Afle:/szU;m, (48)
Dﬁ*“—% % 1/2f0°°dUn§’QdangN)+D:, (49)
e /Zfode—n%dantg’M:. (51)

For D,,D} and A,,A see (14)-(16).

V. SOLUTION OF THE PERTURBED EQUATIONS

Equations (39)-(42) were solved in two different cases:
in a model case of constant mean free path, roughly cor-
responding to the case of neon plasma (with inelastic col-
lisions ignored), and then in a more realistic case of a
molecular nitrogen discharge. The constant mean-free-
path case may be treated to a large extent analytically,
the final results being expressible as integrals over the in-
complete ¥ function, which are then integrated numeri-
cally. The more complex case of molecular nitrogen is
treated by a direct numerical solution of (39)-(42). The
calculations were performed using the data for the molec-
ular nitrogen from [26]. The vibrational temperature was
kept zero. The results are presented in Table I. The lon-
gitudinal diffusion coefficient for the constant mean-free-
path (second column of Table I) case agrees with the re-
sult given in [9,10].

VI. IMPROVED QUASIHOMOGENEOUS
APPROXIMATION

The quantities D, Dy, 4,,, A, and A cannot be
used directly for a construction of the expressions for the
currents analogous to [16,11] as the replacement of the
field dependence by the mean energy dependence is now
less trivial. To preserve the consistency of the first-order
gradient expansion, the field dependence in the leading
drift term in (10) and (11) must be expressed in terms of
the mean energy to first order of accuracy in the gradient
expansion

U,=UE)+ U(N)e-;kgradne +U'E divE

e

+(UF —U¥)e-gradE , (52)

where again for the symmetry reasons

fd mv
mv
Jav,

=e, UM | (53)

[iP=(8;—e;e,))UF +ee;UF , (54
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TABLE I. Transport coefficients.
N, (E/py [V/(cm Torr)])
Constant
Coefficients (44)—(51) mfp 20 30 40 50
a,=D, /UMb, 0.763 0.99 0.84 0.79 0.77
(Dy—D,)/ UMb, —0.388 —0.44 —0.25 —0.22 —0.21
y.=24,, / bediE U 0.381 0.48 0.51 0.50 0.46
(4, f,—zAu)/ b U ~0.396 008  —001  —009  —0.3
ALE/UMb, —0.151 —-0.11 —0.07 —0.06 —0.06
(Df —D)/(UM)b, 0.509 0.77 0.67 0.48 0.37
(Al —24%F) / b, U;H’Edf Ui 0.763 2.55 1.33 0.74 0.45
ANE/(UM), 0.206 0.39 0.33 0.23 0.17
or, as in (45)-(47), 4,,=4,,—EU{Pdb, /dU , -
D* —P* (N) g}, * (H) .
UN = f “dU U3/2f§)N) I Dil EU™db; /dU,™ ;
’ Afi= A} —EUPdb /dU" 58
(BEY— [ ® 3/2 £(E) —
vl = ["av v ey (55) At =Ar,—EUPdb* /aUu® .

(E) — g 3/2 £(E)
Uj ‘fo dU U fjq -

The above dependence of U, on E has to be inverted and
the result substituted into the longitudinal drift term in
(10) and (11). These additional gradient terms give con-
tributions of the same order as the earlier calculated con-
tributions listed in Table I. They thus combine in the fol-
lowing manner, leading to the modified values presented

in Table II:

D,=D,—EU™db, /dU*" ,

A = (E) (H) (56)
w=A,—EUPdb, /dU™ ;

LN

It is interesting to note that the modified value of the lon-
gitudinal diffusion coefficient lies closer to the perpendic-
ular coefficient than the original longitudinal coefficient
corresponding to the field dependence of the mobility in
the longitudinal drift term retained. The modified values
of the tensorial components make possible a direct calcu-
lation of the modified values of the longitudinal transport
coefficients in the expressions for the flows (18) and (19).
In the gradient terms the gradient of the field magnitude
may be expressed through the mean energy gradient us-
ing the simple relation derived for the homogeneous case,
just as described in Sec. II. The perpendicular com-
ponents of the currents remain the same as given by rela-

TABLE II. Modified transport coefficients.

N, (E/py [V/(cmTorr)])

Constant
Coefficients (56)—(58) mfp 20 30 40 50
(Dy—D,) /UMb, —0.073 —0.38 —0.20 —0.13 —0.09
(A —24,,) / b, % U 0.184 0.25 0.10 0.05 0.05
A4, E/UMb, —0.021 —0.08 —0.04 —0.03 —0.02
(D ﬁ' —D¥)/(UM)p, 0.028 —0.28 —0.15 —0.08 —0.03
(Zﬂ‘“~2Aﬁ>/ beUé”)%Ué”’ —0.080 —0.17 —0.20 —0.18 —0.16
A).E /(U), 0.01 —0.008 —0.04 —0.02 —0.00
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TABLE III. Coefficients of quasihomogeneous equations.

N, (E/py [V/(cmTorr)])

Constant
Coefficients of (59) and (60) mfp 20 30 40 50
o 0.690 0.61 0.64 0.66 0.68
7 0.586 0.79 0.65 0.58 0.52
£ —0.250 —0.16 —0.11 —0.13 —0.15
& —0.111 0.16 0.06 —0.01 —0.04
8, 0.789 1.70 0.98 0.77 0.71
8 0.388 1.10 0.60 0.48 0.45
&, . 1.526 1.58 1.58 1.55 1.52
(A), —bl 4y, /b,)E /(U)b, 0.041 0.05 0.02 0.02 0.02

tions (18) and (19). The longitudinal components, howev-
er, will now read

ve“ = _be

1
E+qU, ;—grad”ne

Ay
+v,grad U, + ——edivE

b , (59)

e

1 1
n_eqell =§Ueve“ —b,U, §" Uen—egrad”ne +8"grad” U,

*
— % e —

1 .
"l_—b_A”l edivE
e

+_

b, , (60)

where the longitudinal transport coefficients are ex-
pressed in terms of the tensor components as

— —1
a=2u v=|=UH"| (4, —4,,)/b,, 61)
b, UéH) , I dE "¢ I L e
- 1 5s_ 0D, 62
§||_ b (U(H))z l be ©

The numerical values of the longitudinal coefficients are
given in Table III and their dependence on the reduced
electric field in the case of a N, plasma is shown in Fig. 1.
It is seen in (59) and (60) that terms proportional to divE
appear whose coefficients, however, remain fairly small.
As implied above, the difference between the perpendicu-
lar and the longitudinal diffusion coefficients is somewhat
moderated due to the introduction of the energy repre-
sentation, the other transport coefficients undergoing
similar modifications; cf. Table I.

VII. DISCUSSION AND CONCLUSIONS

The nonlocality corrections modify the kinetic
coefficients of the quasihomogeneous equations [7]
describing the particle and energy balance of the electron
gas in a weakly ionized plasma. In particular, the longi-
tudinal component of both the particle and the energy
flows is changed, thus making a distinction not only be-
tween the longitudinal and the perpendicular (with
respect to the direction of the imposed electric field
[9,10]) diffusion coefficients, but changing in this way also
the other kinetic coefficients In addition, a term appears

in the expressions for the particle and the energy flows,
proportional to the field divergence.

The replacement of the electric field magnitude E by
the mean electron energy U, using the relation between E
and U™ based on (16) [or the extended expression (52)],
which is the method originally used in [7], requires the

Perpendicular coefficients

1.8 T T T T T

1.6 \_; ¢ A i
b N A L

14 -

12t ‘S* .

0.2 4
0
L fl = — J
-0.2 1 1 1 T | )
20 25 30 35 40 45 50
E/po [Vem™'Torr~1]
Parallel coefficients
1.2 T T T T T

0.2 i
c’f”\s\
0 = 0
-0.2 Il 1 1 1 L
20 25 30 35 40 45 50

E/po [Vem™Torr™1]

FIG. 1. Transport coefficients (Tables I and III) in the direc-
tions perpendicular and parallel to the imposed electric field in
a N, plasma dependent on the reduced electric field E /p,.
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neglect of contributions from the higher-order derivatives
of n, and U, to the flows. The same approximation
should be applied to the energy loss term H, (9) on the
right-hand side of the energy equation (7). To maintain
consistency, the correction terms in derivatives to second
order would have to be included, which would eventually
combine with analogous expressions on the left-hand side
of (7). A more rigorous derivation of the transport equa-
tions could at best be made by applying the projection
operator technique [27]. In this analysis, where a time-
independent electric field was assumed, a more intuitive
approach was used, which corresponds closely to the
original derivation in [7].

A question may arise whether the higher-order deriva-
tives cannot in some cases represent a non-negligible con-
tribution and thus invalidate the solution of the quasiho-
mogeneous set. This is indeed the case as it follows from
a comparison between the direct solution of the

Boltzmann equation and the solution of the quasihomo-
geneous set [8]. As mentioned earlier, the energy scatter-
ing in the case of plasma electrons is not dominated by
the elastic collision frequency, but by its m /M multiple.
With a high inelastic threshold U, lying above the mean
electron energy, the memory effects combine with the
electron motion in the potential field between the inelas-
tic collisions. For instance, for a small sinusoidal devia-
tion from the homogeneous equilibrium, the vulnerable
wavelengths are equal to U, /E and its integral fractions.
However, in the case of molecular gases the (vibrational)
inelastic threshold is fairly low, it is smaller than the
mean electron energy, and the inelastic collisions on vi-
brational levels act in the same way as the elastic col-
lision, thus shortening the energy memory length. For
that reason, the hydrodynamic approximation for the
description of an electron gas in a weakly ionized molecu-
lar gas plasma makes sense.
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